Introducing the Sequence Model for Text Retrieval
نویسندگان
چکیده
We propose and explore a novel approach, called the sequence model, to text retrieval. The model differs from classical ones in the extent of how positional information of term occurrences is used for relevance judgment. In the sequence model, documents and queries are viewed as sequences of term-position pairs and the relevance of a document to a query is judged by the similarity between their respective representative sequences. We suggest three primitive measures of sequence similarity, each capturing a distinct aspect of resemblance between two sequences. These similarity measures can be combined in various ways to suit different information needs. We have developed a prototype system with the sequence model as its core. Experimental results show that our sequence-based approach is often more effective than appearance-based approaches.
منابع مشابه
Recognition of Sequence of Print and Ink Strokes: Investigation the Effect of Handwriting Pressure, Hue of Ink, Printer and Paper Type
By introducing of digital techniques, forensic document examiners has been encouraged to work with better accuracy in non-destructive ways. The aim of this study was to present a non-destructive, accessible, economic (affordable), user friendly, portable, useful and easy technique for specifying the order of crossing lines of ink stroke and printed text. The intersections of LaserJet and In...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملUsing Text Surrounding Method to Enhance Retrieval of Online Images by Google Search Engine
Purpose: the current research aimed to compare the effectiveness of various tags and codes for retrieving images from the Google. Design/methodology: selected images with different characteristics in a registered domain were carefully studied. The exception was that special conceptual features have been apportioned for each group of images separately. In this regard, each group image surr...
متن کاملA new term-weighting scheme for naïve Bayes text categorization
Purpose – Automatic text categorization has applications in several domains, for example e-mail spam detection, sexual content filtering, directory maintenance, and focused crawling, among others. Most information retrieval systems contain several components which use text categorization methods. One of the first text categorization methods was designed using a naı̈ve Bayes representation of the...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کامل